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1 Introduction

Parallel and distributed computing techniques have been used e�ectively to speed up the execution
times of a multitude of applications. How parallel code is written depends on many factors related
not only to the application under consideration, but also on the hardware and supporting software
available. A programmer undertaking the task of writing a parallel code faces several choices:

� What is the underlying programming model for the target execution platform (distributed- or
shared-memory)?

� How should the division of work within the computation be accomplished (task- or data-
parallel)?

� What amount of work should be distributed to individual processors (coarse- or �ne-grain)?

Another fundamental concern when writing parallel codes is balancing the amount of work done
by each processor. Since the overall execution time often is dependent upon the time taken by the
processor running the task with the longest execution time, it behooves the programmer to ensure
that an equitable distribution of work is assigned to each processor within the computation. Some
applications have a natural, static division of equivalent amounts of work while others have a more
unpredictable a priori partition of labor, often related directly to the input data. A dynamic load
balancing method to assign computations in a way that attempts to have all processors �nish their
work at the same time would be best suited for this latter set of applications. One such dynamic
task allocation method is known as the Master-Worker model.

We present a modi�ed version of the Master-Worker model, called the Queen-Drone model,
that is adapted to run coarse-grain, task-parallel computations on collections of distributed high
performance computing (HPC) platforms under the MPI Connect intercommunication library. This
name was chosen for the analogy of a single queen bee assigning tasks to drone bees; disjoint groups
of drones are collected into hives which correspond to groups of parallel worker processes external
to the queen process, typically executing on separate parallel machines. We also present some
experiences and execution results of our model applied to a simple integer factoring code and a
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large-scale harbor wave response code. We have been able to run our codes on separate machines of
the same architecture, as well as between machines of di�erent manufacture.

Though care was taken to remove language speci�c details, the reader should be aware that,
for this report, all codes discussed were written in Fortran and the Fortran names of routines are
given in the text. The authors do not foresee any di�culty implementing the models or algorithms
discussed with the C language. Section 2 reviews the Master-Worker computation model while
Section 3 reviews MPI Connect. The Queen-Drone model is presented and discussed in Section 4.
Our experiences with two parallel application codes are described in Section 5. Section 6 presents
some conclusions and future plans for use of the Queen-Drone algorithm.

2 Master-Worker Model

The Master-Worker is a classic parallel programming model, and various citations in the literature
are available; e.g., [5, 3]. One process (the master, typically executing on a single processor) is
devoted to assigning computations to all the other processes (the workers, each executing on separate
processors) involved. When a worker process completes a task, a request for more work is sent to
the master process, which replies with one of two messages: a message containing the next task to
be computed, or, if all work has been assigned, a message signaling that the parallel computation
has been completed. Upon receipt of the termination signal from the master, worker processes exit
gracefully. In the case where there is some serial computation to be performed before resuming
parallel execution, the master process may detain workers by not immediately replying to worker
requests for more tasks until the application warrants it. Algorithms 1 and 2 display pseudo-code
for the master and worker processes.

Depending upon the application requirements, it is possible that the master process will perform
some pre-processing of data in order to prepare a task for assignment to a worker. However, more
often than not, the master process merely reads task data from a �le and relays this to workers.
The master process remains mostly idle during the parallel execution of tasks. The appeal of the
Master-Worker model is in the immediate dispatch of a new task in response to worker requests
which reduces worker idle time.

To execute this programming model, the use of a message passing library (e.g., MPI) is essential.
While the Master-Worker model is easily programmed to run on a single parallel machine, running
such a model for a single application across distributed HPC machines, each running a potentially
di�erent version of MPI, presents interesting challenges. In order to meet those challenges, we
developed a variation of the Master-Worker model known as the Queen-Drone model. We have
programmed this model using MPI Connect.

3 MPI Connect

MPI Connect [4] is a metacomputing middleware{executable from either C or Fortran codes{that
allows separately initiated MPI applications to interact in a peer-peer fashion. It allows dynamic
connect and disconnect of disjoint collections of processors during the execution of applications. The
MPI 1.1 standard [7] only supports a static process model; i.e., all processors that would participate
in a computation are known at the outset of execution.

While MPI Connect was originally built upon MPICH [6] and LAM6 [2], it has been extended to
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Algorithm 1 Master Process Pseudo-code

do i = 1 to number of tasks
blocking receive ! wait for work request
blocking send ! send task data

end do

! All tasks have been assigned
do i = 1 to num procs - 1
blocking receive ! wait for work request
blocking send ! send termination signal

end do

Algorithm 2 Worker Process Pseudo-code

do in�nite loop
blocking send ! ask master for work
blocking receive ! get task data
if not termination signal then
perform calculations

else

exit in�nite loop
end if

end do

support IBM MPIF and SGI MPI. One of the strengths of MPI Connect is the capability to have the
di�erent applications running under di�erent versions of MPI. This is true whether the applications
are running on the same or di�erent platforms. Thus the user is able to utilize the optimized vendor
version of MPI on each HPC platform involved in the computations. MPI Connect currently uses
PVM as the interconnection and process management layer.

Under MPI Connect, MPI codes interoperate by naming themselves with a third party naming
service that coordinates the interaction. This naming service and its location are transparent to
the code. The names used are plain ASCII and are completely freeform to aid debugging. Once
MPI applications have named themselves they can then locate other MPI applications by using the
naming service. When both parties agree, an MPI intercommunicator is created between them and
this is then used in the same way as any other intercommunicator in MPI. In order to disconnect
from all intercommunicators established with other codes, the MPI application removes its name
from the naming service.

Con�guring current MPI applications to run under MPI Connect is accomplished with a minimal
impact to the code. Three extra commands are added:

� MPI CONN REGISTER() to register the code's name with the naming service,

� MPI CONN INTERCOMM CREATE() to create an intercommunicator with another named applica-
tion, and

� MPI CONN LEAVE() to remove the code's name from the naming service and consequently sever
all MPI Connect intercommunicators in which the code is involved.
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Multiple calls to MPI CONN INTERCOMM CREATE() may be needed, one for each application for which
intercommunication is to be established.

Using the intercommunicator returned from the MPI CONN INTERCOMM CREATE() call in the appro-
priate MPI communication functions in order to refer to external applications is the only other change
needed. Upon execution of a MPI call, the MPI Connect library tests the communicator used. If the
communicator is local to the application, the local pro�ling library version of the MPI call involved is
executed. If the communicator was returned from a previous call to MPI CONN INTERCOMM CREATE(),
the appropriate actions to complete the MPI function are handled by the MPI Connect intercom-
munication library and process management software. This process is transparent to the user.

4 Queen-Drone Model

The Master-Worker model was originally designed and intended to run on a single HPC platform
with all processors able to communicate through some message passing mechanism. By running on
a single platform, applications load-balanced through the Master-Worker algorithm are restricted
to the total number of processors available on that machine. In some cases the scalability of the
application is such that a relatively small number of processors is adequate to achieve a high level of
e�ciency. Other applications, especially in the realm of scienti�c computation and simulation, can
make e�ective use of hundreds or even thousands of processors. Since very few commercially available
HPC systems are equipped with thousands of processors, a user must coordinate an application
running across multiple machines to harness the computational power of a very large number of
processors. Under PVM, it is possible to run the Master-Worker model across multiple platforms.
However, since MPI has become the de facto standard for message passing, we have chosen to develop
and study codes under MPI.

Our model for coordination of many di�erent processors executing tasks on di�erent HPC plat-
forms is based on the analogy of a queen bee directing the work of many drone bees, which are
grouped into disjoint hives. The queen represents the master process parceling out work; the drone
bees represent the worker processes doing the computations assigned to them; the hives are separate
HPC systems on which the drones carry out their tasks. The Queen-Drone model is a modi�cation
of the Master-Worker model which utilizes MPI and MPI Connect as the underlying communica-
tion fabric between the queen process and the drone processes executing on di�erent machines.
Algortithms 3 and 4 show pseudo-code to implement the queen process and the drone process.

For the remainder of the paper, we make the assumption that the queen is the only process within
a communicator with all drones collected into other, disjoint communicators. While it is possible
to run the queen and drones within the same communicator, this would require special handling of
\local" communication between queen and resident drones. Such a special case, while not overly
di�cult to program, is beyond the focus of this paper.

4.1 Queen-Drone Algorithm Details

The �rst thing that each drone process does is to register the hive name and create an intercom-
municator with the queen process. Each drone process must call MPI CONN REGISTER() to declare
its participation within the hive communicator and MPI CONN INTERCOMM CREATE() in order to get
a handle for the queen's communicator. This handle is used in MPI SEND() and MPI RECV() routine
calls as the communicator parameter. Before any drone in the hive requests any tasks, one drone
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Algorithm 3 Queen Process Pseudo-code

connect with hives ! intercomm set up
do i = 1 to number of tasks
probe for drone request ! busy wait on comm
blocking receive
blocking send ! send task data

end do

! All tasks have been assigned
do worker = 1 to num drones
probe for drone request ! busy wait on comm
blocking receive
blocking send ! send termination signal

end do

Algorithm 4 Drone Process Pseudo-code

connect with queen ! intercomm set up
do in�nite loop
blocking send ! ask queen for work
blocking receive ! get task data
if not termination signal then
perform calculations

else

exit in�nite loop
end if

end do
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process (designated as the lead drone) sends an informational message to the queen containing the
total number of drones that are active in the hive. The queen adds this count to a total of active
drones and responds by returning a unique hive number to the lead drone. The hive number is broad-
cast to the other drone processes in the hive. In this way, all drones within a hive are synchronized
to a point in the execution at which it is known the queen has created all hive intercommunicators
and is ready to handle task requests.

Informational messages from the lead drones contain a single integer count of the number of
drones in the hive. Task request messages from drones to the queen process need not contain any
data; the tag is su�cient to denote that the message is a request for more work. Similarly, messages
from the queen to drone processes use the tag to denote whether the message carries task data
or the message is the termination signal. As an aid for debugging during the development of the
Queen-Drone algorithm, we encoded the hive number and the sending drone's rank within the hive
communicator into a single integer and used this value as the data portion of the task request
messages sent to the queen process.

The �rst thing that the queen process must do is register her name and create the intercom-
municators between herself and the drone processes. One communicator per hive is su�cient
since all drones within the hive are part of the same MPI Connect communicator and have a
unique rank within that communicator. Intercommunicators that are returned from each call to
MPI CONN INTERCOMM CREATE() are kept in an array of intercommunicators within the queen pro-
cess.

The MPI standard allows the use of wildcard placeholders to match on any sender and/or any
message tag within the MPI RECV() routine. There is no wildcard for the communicator argument
in the parameter list. Thus, to execute the \blocking receive" steps within the queen process,
the explicit communicator from which the message is to be received must be known. This presents
no problem in the Master-Worker model since all processes are within the same communicator.
However, since drones are in communicators di�erent than the queen and there may be two or more
hive intercommunicators, the queen process must \probe for drone request."

To implement this \probe for drone request" step, the queen continuously loops over each
intercommunicator within her array, in turn. Each intercommunicator is used as an argument to
MPI IPROBE() with a sender wildcard placeholder. This MPI routine immediately returns a TRUE
value if a message has arrived from the stated sender within the stated intercommunicator, or
FALSE if no such message is awaiting receipt. By using the sender wildcard as an argument to
MPI IPROBE(), the queen probes for the arrival of any message from the given intercommunicator.
When the probe function returns TRUE, the probe loop is exited and it is known which explicit
intercommunicator to use for the MPI RECV() routine call that follows.

A case-selection structure to handle both task requests and informational messages is easily
implemented. This technique hides latency of the informational messages between the queen and
drone processes. The queen process is able to assign work to drones before all informational messages
(which may be delayed due to network tra�c) from other hives have been received.

4.2 Queen-Drone Advantages

We have identi�ed several advantages of running codes under the Queen-Drone model including a
minimal amount of code changes to implement from a Master-Worker code and the capability to
run on multiple HPC platforms. Each of these is discussed in more detail below.
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4.2.1 Minimal Code Changes

The changes needed to convert a current Master-Worker MPI code to an equivalent Queen-Drone
code are minimal. Perhaps the most challenging part of the conversion is to split the code into two
separate programs: one for the queen process and the other for the drones. Both codes require the
addition of MPI Connect registration and departure routine calls. Besides the two drone request
probe loops, the queen program also requires code to process the names of the participating hives in
order to establish intercommunicators with each and to handle the informational messages from the
lead drones. If a static set of hives is to be used each time the codes are run, all hive names could be
incorporated directly into the program. However, if a dynamic set of hives is desired, a hive name
�le, listing names of all participating hives and updated before the queen begins execution, is used.
Unique hive names are best included within each copy of the drone code.

The drone program requires a call to the MPI CONN INTERCOMM CREATE() routine that is executed
by each drone. Code to choose a lead drone in each hive (the process with rank zero is easiest to
elect leader) and coordinate the receipt and broadcast of the con�rmation from the queen process
must also be included.

4.2.2 Multiple HPC Platforms

Applications under the Queen-Drone model may be run on multiple, geographically separated HPC
platforms. The queen process may also be running on a single HPC processor. However, since the
queen remains mostly idle during the bulk of the execution, it is possible to run the queen process on
a workstation if no specialized HPC services are required to prepare tasks for distribution to drone
processes. In this way, no expensive HPC resources are used to execute a process that does little
computation.

Each HPC system can be running one or more copies of the drone program and each group of
drones will execute as if it were the only hive participating in the computation. This allows the
user the 
exibility to compute with as many or as few drones distributed among as many or as few
hives as �t the requirements of the application or physical resources available. The independence of
hives allows a dynamic allocation of resources from one run to the next. That is, while the static
allocation of the number of drones and hives must be �xed at the outset of execution, subsequent
computations need not be required to use the same con�guration as a previous execution.

4.2.3 Best Platform for Tasks

If a computation is made up of homogeneous tasks, the choice of HPC platforms to be used is
almost irrelevant. However, if a computation contains heterogeneous tasks that are better suited
for di�erent HPC systems, the queen process can be programmed to assign tasks to processors on
appropriate architectures. Unless a �xed assignment con�guration of hives to HPC resources is
programmed into the code, the informational message to the queen process is used to identify a
hive's execution platform.

To correctly assign tasks to drones on speci�c machines, two methods are available to the queen.
The queen process screens for speci�c communicators from which to receive task requests for the
assignment of the next task if the order of task assignment is critical. On the other hand, if there
is no dependence between the execution order of di�erent types of heterogeneous tasks, multiple
queues of tasks are kept. When a task request is received, the platform running the requesting task
is determined and the task at the head of the proper queue is assigned. Once a queue for a HPC
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platform becomes empty, drones executing on the corresponding machine type may be terminated
or assigned tasks from other queues still containing work, if appropriate.

5 Applications

In this section we present some of our experiences in using the Queen-Drone model to program two
parallel applications. The �rst is a simple integer factoring code that was used to develop and debug
the Queen-Drone algorithm. The second, CGWAVE, is a harbor wave response code developed by
researchers at the Coastal and Hydraulics Laboratory at U. S. Army Corps of Engineers Waterways
Experiment Station (CEWES).

5.1 Integer Factoring

To demonstrate the viability of the Queen-Drone model, a simple application with tasks of di�ering
execution times was sought. We decided on an integer factoring algorithm. The factoring is done
by the brute force method of dividing the number under consideration by all integers between two
(2) and the square root of the original until all prime factors are found. The number of factors and
number of potential factors that must be tested in such an algorithm guarantees a wide range of
execution times for di�erent inputs. However, factoring a single number is still a relatively �ne-
grained task. To create more coarse-grained tasks, the factoring algorithm was embedded within a
loop that factored, in turn, all numbers between the initial input argument and twice that argument.

The task data for each drone process is simply the integer argument which is doubled by the
drone to determine the range of numbers to be factored. We were able to run the drone processes
on two separate SGI/Cray Origin2000 systems. These platforms are located at the CEWES Major
Shared Resource Center (MSRC) in Vicksburg, MS, and the Aeronautical Systems Center (ASC)
MSRC at Wright-Patterson Air Force Base in Dayton, OH. We were able to execute the code with
both Origin2000 systems simultaneously involved and more than one hive allocated to a single
Origin. During separate executions, the queen process was successfully run on both one processor
of the CEWES MSRC Origin as well as a Sun workstation located at the University of Tennessee,
Knoxville.

5.2 CGWAVE

CGWAVE is a Fortran 77 code used for military and civil engineering applications. The code
simulates the response of a harbor's surface to the stimulus of waves from the open ocean within
the bathymetry of the harbor. The underlying mathematical model is a two-dimensional, elliptic
mild-slope wave equation which leads to a Helmholtz-type equation. The resulting large, sparse
system is solved via conjugate gradient. Details of this code can be found in [9].

To use the code e�ectively, a number of di�erent open ocean conditions are modeled. The set
of parameters describing the waves entering the harbor (amplitude, periodicity, direction) is known
as a wave component. Each wave component yields an independent sparse system of equations, the
solution of which is combined with the solution of all other wave components. Thus, CGWAVE is
able to distribute tasks of wave components to drones with a post-processing step added to gather
the results from all computations to form the �nal harbor response solution.

8 of 10



April 15, 1999 Computation Allocation Model Under MPI Connect

Because the execution time for individual wave components can often be measured in hours,
running a small number (e.g., 75) of wave components can take weeks of CPU time. Overall execution
time can easily be reduced by running wave components in parallel. For example, on 32 processors
(a not unlikely number of processors to be found on commercially available HPC platforms), 75
components could take about 24 hours to complete. However, researchers are interested in computing
solutions that involve 500 to 1000 wave components. Even on 32 processors, this would take weeks
to compute in the worst case. Since all wave component computations are independent from one
another, more processors can be employed to reduce the wallclock execution time.

The serial CGWAVE code was �rst parallelized with a Master-Worker model by researchers
at CEWES MSRC. After our success with the factoring application described above, the Queen-
Drone algorithm was incorporated into CGWAVE. We have run these queen and drone processes
on SGI/Cray Origin2000 systems located at CEWES MSRC and ASC MSRC. As expected, the
execution time for a given suite of wave components depends on the total number of processors able
to be assigned to the computations.

As another facet in the parallelization of CGWAVE, OpenMP [8] directives were used to paral-
lelize the conjugate gradient solver for individual wave components. OpenMP threads are spawned
on separate processors to compute certain loop iterations in parallel. This modi�cation further re-
duces execution time of wave components as long as extra processors are available. Even though only
a small number of processors may be available on any one HPC platform, multiple platforms can
be connected under the Queen-Drone implementation to access potentially hundreds of processors
for execution of OpenMP threads. Further details of CGWAVE implemented under this dual-level
parallelism may be found in [1].

6 Conclusions and Future Work

We have presented the Queen-Drone model of parallel task allocation under MPI Connect. To
demonstrate the e�ectiveness of this model for coarse-grain, task-parallel computations, two parallel
applications have been coded and successfully run with the Queen-Drone algorithm used to distribute
tasks across multiple HPC platforms.

Future work on the CGWAVE code will include taking advantage of being able to assign tasks to
di�erent HPC platforms that are best suited to execute those tasks under the Queen-Drone model.
The computation time for wave components has been found to be dependent upon the amplitude
and length of the wave period under consideration. With this in mind, it would be possible to assign
short period wave components to processors on one parallel machine (e.g., IBM SP) while the long
period components could be assigned to processors on an SGI/Cray Origin2000 which would be able
to compute with OpenMP threads. In fact, along with the wave component data, the number of
threads to be spawned in the execution could also be sent to a drone process on an Origin2000.
This heterogeneous combination of HPC platforms would be useful in cases where there is a severe
limitation on the resources of one or more platforms; e.g., only a handful of Origin2000 processors
were free while, at the same time, a small number of SP processors could be used. The ease and
versatility of programming achievable with MPI Connect and the Queen-Drone model make such
cross-architecture computations possible.
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